CRISPR/Cas9ϵͳ×Ô¾õÏÖÒÔÀ´£¬»ñµÃ¿ìËÙÉú³¤Òѱ»ÆÕ±éÓ¦ÓÃÉúÃü¿Æѧ»ù´¡Ñо¿¡¢»ùÒòÖÎÁÆ¡¢¶¯Ö²ÎïÓýÖÖ¸ÄÁ¼µÈÁìÓò¡¾1¡¿¡£»ùÓÚCas9ÇпÚø£¨nCas9£©ÓëÍÑ°±Ã¸½á¹¹Óò/ÌÇ»ù»¯Ã¸£¨MPG»òUNG£©µÄÈںϳɵļî»ù±à¼Æ÷£¨ABE£¬CBE£¬gGBE£¬gTBE£©£¬¿É¸ßЧʵÏÖA-to-G£¬C-to-T£¬C-to-G£¬G-to-C/T£¬ÒÔ¼°T-to-G/CµÄ¼î»ùÌæ»»£¬Îª¾ÀÕýÍ»±äµÄ¼²²¡Î»µãÌṩÁ˾«×¼¸ßЧ»ùÒò±à¼¹¤¾ß¡¾2-6¡¿¡£È»¶øÓÉÓÚCas9µÄÌå»ý¹ý´ó£¨1368¸ö°±»ùËᣩ£¬»ùÓÚnCas9µÄ¼î»ù±à¼Æ÷ÄÑÒÔʵÏÖµ¥¸öAAV£¨4.7kb) µÄ°ü×°µÝËÍ£¬¼«´óÏÞÖÆÁËÔÚÌå»ùÒò±à¼µÄÉú³¤Ó¦Ó᣽üÄêÀ´Ò»ÏµÁнô´ÕÐ͵ÄCas9ÂѰס¾7-9¡¿¡¢Cas12fϵÁÐͬԴÎ10-14¡¿¡¢ÒÔ¼°Æä×æÏÈÂÑ°×TnpB¡¾15,16¡¿±»±¨µÀ£¬ÓÉÓڱ༻îÐÔÓÐÏÞ£¬»òȱ·¦HNH½á¹¹Óò¶øÄÑÒÔË¢ÐÂΪȱ¿Úø£¬¶¼ÏÞÖÆÓÃÓÚ¼î»ù±à¼Æ÷µÄ¿ª·¢¡£2021Ä꣬ÕÅ·æÍŶӷ¢Ã÷ÓÉIS200/IS605ת×ù×Ó³¬¼Ò×å±àÂëµÄIscBºËËáø£¬±»ÒÔΪCas9µÄ×æÏÈÂÑ°×£¬¾ßÓÐÓëCas9ÏàËƵÄHNHºÍRuvC½á¹¹Óò£¬ÇÒ½öÓÐÔ¼500¸ö°±»ùËᣨԼSpCas9µÄ1/3´óС£©¡¾17,18¡¿£¬¾ßÓпª·¢³É΢Ðͼî»ù±à¼Æ÷µÄDZÁ¦¡£
2023Ä꣬Ñî»ÔÍŶÓͨ¹ý¶ÔOgeuIscB/¦ØRNAϵͳµÄ¹¤³Ì»¯Ë¢Ð£¬¿ª·¢³öÁ˸ßЧµÄOgeuIscB±äÌ壨enOgeuIscB£©£¬²¢Í¨¹ýÈÚºÏÍÑ°±Ã¸½á¹¹Óò£¬¿ª·¢³ö¸ßЧÃÔÄãÐͼî»ù±à¼Æ÷£¨miBE£©£¬Íƶ¯ÁËDNAµ¥¼î»ù±à¼ÁìÓò½øÈëÃÔÄãÐ͵ġ°ÐÂʱ´ú¡±£¬¾ßÓм«´óµÄÁÙ´²Ó¦ÓÃDZÁ¦¡¾19¡¿¡£È»¶ø£¬IscB/¦ØRNAϵͳÐèÒªÑÏ¿áµÄ6λ¼î»ù°ÐÐòÁÐÏà½ü»ùÐò£¨TAM£©À´Ê¶±ðÄ¿µÄDNA£¬Ê¶±ðλµãÓÐÏÞ¡£Òò´Ë£¬¿ª·¢°Ð±êʶ±ð¹æÄ£¸ü¹ãµÄ¸ßЧСÐÍIscB¼î»ù±à¼Æ÷ÊÇÊ®·ÖÐëÒª¡£
2024Äê8ÔÂ15ÈÕ£¬»Ô´ó£¨ÉϺ££©ÉúÎï¿Æ¼¼ÓÐÏÞ¹«Ë¾Ñз¢ÍŶӡ¢¸´µ©´óѧÁ¥ÊôÑÛ¶ú±Çºí¿ÆÒ½Ôº»Æ½õº£ÍŶӺÍÖпÆÔºÄÔ¿ÆѧÓëÖÇÄÜÊÖÒÕ׿ԽÁ¢ÒìÖÐÐÄÑî»ÔÍŶÓÏàÖúÔÚNature Chemical BiologyÉϽÒÏþÌâΪEngineered IscB¨C¦ØRNA system with expanded target range for base editingµÄÑо¿ÂÛÎÄ¡£¸ÃÑо¿Í¨¹ýºê»ùÒò×éÊý¾ÝÍÚ¾ò£¬Åжϳö19ÖÖ¾ßÓвî±ðTAM¹æÄ£µÄÐÂÐÍIscB-¦ØRNAϵͳ£»×ÛºÏRNA½á¹¹ÓÅ»¯¡¢ÂÑ°×Öʹ¤³Ì»¯Ë¢Ð¡¢Á÷ʽϸ°ûÊõ¡¢ÍѰмì²âµÈÊÖÒÕÊֶΣ¬ÀֳɻñµÃÔÚÈËÀàϸ°ûÄÚ¾ßÓабêʶ±ð¹æÄ£¹ã¡¢¸ü¸ßЧ±à¼»îÐÔµÄIscBϵͳ£¨IscB.m16*£©£»Í¨¹ýÈÚºÏÍÑ°±Ã¸½á¹¹Óò£¬½øÒ»²½¿ª·¢³ö»ùÓÚÐÂÐÍIscBµÄÃÔÄãÐÍÏÙàÑßʺͰûà×़î»ù±à¼Æ÷£¬²¢ÔÚ²¸È鶯Îïϸ°ûºÍСÊó¼²²¡Ä£×ÓÖаüÀ¨SpCas9-BEÎÞ»îÐԵļ²²¡Î»µãÉϾùÑéÖ¤ÁËÆäÇ¿Ê¢µÄ¼î»ù±à¼Ð§ÂʺÍÆÕ±éµÄ°Ð±êʶ±ðÄÜÁ¦£¬ÎªÎ´À´¾«×¼»ùÒòÖÎÁÆÁÙ´²Ó¦ÓÃÌṩÁËÇ¿ÓÐÁ¦Ö§³Ö¡£
Ñо¿Ö°Ô±Ê×ÏÈ´Ó200GBµÄºê»ùÒò×éÊý¾Ý¿âÖÐÍÚ¾ò³ö19¸öδ±»±íÕ÷µÄÐÂÐÍIscBϵͳ£¬½ÓÄÉϸ¾úºÄ½ßʵÑéÅжÏÏìÓ¦µÄTAMÐòÁУ»½øÒ»²½Ê¹ÓÃÓ«¹â±¨¸æϵͳ£¬É¸Ñ¡³ö10¸ö¾ßÓÐÕæºËϸ°û»îÐÔµÄIscBϵͳ£¬ÆäÖÐIscB.m16ÌåÏÖ³ö×î¸ßµÄ±à¼»îÐÔ¡£ÎªÌá¸ßIscB.m16ϵͳµÄ»îÐÔ²¢ÍØ¿íTAM·¶11:33:58Χ£¬Ñо¿Ö°Ô±¶ÔIscB.m16ºËËáø¾ÙÐÐRuvC½á¹¹ÓòµÄ¾«°±ËáɨÃèÍ»±äºÍTAMʶ±ðÏà¹ØλµãµÄ±¥ºÍÍ»±ä£¬ÒÔ¼°¶ÔÆä¦ØRNA¾ÙÐо¥»·½Ø¶ÌºÍ¼î»ùÌæ»»µÄÓÅ»¯Ë¢Ð¡£Í¨¹ý¶àÂÖµü´úµÄ¸ßͨÁ¿Ó«¹â±¨¸æϵͳɸѡ£¬×îÖÕ»ñµÃÁ˱༻îÐԸߺÍTAM¹æÄ£¿íµÄIscB.m16±äÌå(IscB.m16*,¼´IscB.m16RESH-¦ØRNA)¡£Í¨Ï꾡¾úºÄ½ßTAMÐòÁÐʶ±ðʵÑé·¢Ã÷£¬Ïà½ÏÓÚÒ°ÉúÐÍIscB.m16µÄTAMλµãMRNRAAÀ©Õ¹µ½NNNGNA¡£
£¨Credit: Nature Chemical Biology£©
ÔÚ´Ë»ù´¡ÉÏ£¬Ñо¿Ö°Ô±¹¹½¨ÁËÃÔÄãÐÍÏÙàÑßʼî»ù±à¼Æ÷£¨IscB.m16*-ABE£©ºÍ°ûà×़î»ù±à¼Æ÷£¨IscB.m16*-CBE£©¡£ÔÚ²¸È鶯Îïϸ°ûÖУ¬IscB.m16*-ABEµÄ¼î»ù±à¼Ð§ÂÊÓëSpG-ABEЧÂÊÏ൱£¬ÏÔÖø¸ßÓÚÒѱ¨µÀµÄenOgeuIscB-ABEÇÒÓиü¹ãµÄTAM¼æÈÝÐÔ¡£ÔÚÈËÔ´»¯ÈËÔ´»¯¶ÅÊϼ¡ÓªÑø²»Á¼Ö¢£¨DMD£©Ð¡Êó¼²²¡Ä£×ÓÖУ¬µ¥AAV°ü×°µÄIscB.m16*-CBE¾×¢ÉäÖÁ¼¡Èâ×éÖ¯ºó£¬Àֳɲ¢¸ßЧµÄ½«Ð¡Êó¼¡ÏËάÖÐdystrophinÂÑ°×ˮƽ»Ö¸´ÖÁÒ°ÉúÐÍСÊóµÄ40%£¬ÎªDMD»¼ÕßÌṩÁËÒ»ÖÖÓÐÏ£ÍûµÄ»ùÒòÖÎÁÆÕ½ÂÔ¡£
×ܵÄÀ´Ëµ£¬¸ÃÑо¿Í¨¹ý¶ÔÐÂÐÍIscBµÄÍÚ¾òºÍÓÅ»¯Ë¢Ð£¬¿ª·¢³ö°ÐÏò¹æÄ£¸ü¹ãµÄ¸ß»îÐÔ¡¢¸ßÌØÒìÐÔµÄÃÔÄãÐͼî»ù±à¼¹¤¾ßIscB.m16*-BE£¬ÔÚ»ùÓÚAAVµÄ»ùÒòÖÎÁÆÓ¦ÓÃÖÐÏÔʾ³öÆæÒìµÄÓÅÊƺÍÖØ´óµÄDZÁ¦¡£
²Î¿¼ÎÄÏ×£º
1. Porto, E.M., Komor, A.C., Slaymaker, I.M., and Yeo, G.W. (2020). Base editing: advances and therapeutic opportunities. Nature Reviews Drug Discovery 19, 839¨C859. https://doi.org/10.1038/s41573-020-0084-6.
2. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420¨C424. https://doi.org/10.1038/nature17946.
3. Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., and Liu, D.R. (2017). Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage. Nature 551, 464¨C471. https://doi.org/10.1038/nature24644.
4. Kurt, I.C., Zhou, R., Iyer, S., Garcia, S.P., Miller, B.R., Langner, L.M., Gr¨¹newald, J., and Joung, J.K. (2021). CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 39, 41¨C46. https://doi.org/10.1038/s41587-020-0609-x.
5. Tong, H., Liu, N., Wei, Y., Zhou, Y., Li, Y., Wu, D., Jin, M., Cui, S., Li, H., Li, G., et al. (2023). Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. National Science Review, nwad143. https://doi.org/10.1093/nsr/nwad143.
6. Tong, H., Wang, H., Wang, X., Liu, N., Li, G., Wu, D., Li, Y., Jin, M., Li, H., Wei, Y., et al. (2024). Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase. Nat Commun 15, 4897. https://doi.org/10.1038/s41467-024-49343-5.
7. Chen, S., Liu, Z., Xie, W., Yu, H., Lai, L., and Li, Z. (2022). Compact Cje3Cas9 for Efficient In Vivo Genome Editing and Adenine Base Editing. The CRISPR Journal 5, 472¨C486. https://doi.org/10.1089/crispr.2021.0143.
8. Davis, J.R., Wang, X., Witte, I.P., Huang, T.P., Levy, J.M., Raguram, A., Banskota, S., Seidah, N.G., Musunuru, K., and Liu, D.R. (2022). Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat. Biomed. Eng 6, 1272¨C1283. https://doi.org/10.1038/s41551-022-00911-4.
9. Zhang, H., Bamidele, N., Liu, P., Ojelabi, O., Gao, X.D., Rodriguez, T., Cheng, H., Kelly, K., Watts, J.K., Xie, J., et al. (2022). Adenine Base Editing In Vivo with a Single Adeno-Associated Virus Vector. GEN Biotechnology 1, 285¨C299. https://doi.org/10.1089/genbio.2022.0015.
10. Hino, T., Omura, S.N., Nakagawa, R., Togashi, T., Takeda, S.N., Hiramoto, T., Tasaka, S., Hirano, H., Tokuyama, T., Uosaki, H., et al. (2023). An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell 186, 4920-4935.e23. https://doi.org/10.1016/j.cell.2023.08.031.
11. Kim, D.Y., Lee, J.M., Moon, S.B., Chin, H.J., Park, S., Lim, Y., Kim, D., Koo, T., Ko, J.-H., and Kim, Y.-S. (2022). Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat Biotechnol 40, 94¨C102. https://doi.org/10.1038/s41587-021-01009-z.
12. Kong, X., Zhang, H., Li, G., Wang, Z., Kong, X., Wang, L., Xue, M., Zhang, W., Wang, Y., Lin, J., et al. (2023). Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat Commun 14, 2046. https://doi.org/10.1038/s41467-023-37829-7.
13. Xu, X., Chemparathy, A., Zeng, L., Kempton, H.R., Shang, S., Nakamura, M., and Qi, L.S. (2021). Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Molecular Cell 81, 4333-4345.e4. https://doi.org/10.1016/j.molcel.2021.08.008.
14. Wu, Z., Zhang, Y., Yu, H., Pan, D., Wang, Y., Wang, Y., Li, F., Liu, C., Nan, H., Chen, W., et al. (2021). Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat Chem Biol 17, 1132¨C1138. https://doi.org/10.1038/s41589-021-00868-6.
15. Karvelis, T., Druteika, G., Bigelyte, G., Budre, K., Zedaveinyte, R., Silanskas, A., Kazlauskas, D., Venclovas, ?., and Siksnys, V. (2021). Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692¨C696. https://doi.org/10.1038/s41586-021-04058-1.
16. Kim, D.Y., Chung, Y., Lee, Y., Jeong, D., Park, K.-H., Chin, H.J., Lee, J.M., Park, S., Ko, S., Ko, J.-H., et al. (2022). Hypercompact adenine base editors based on transposase B guided by engineered RNA. Nat Chem Biol 18, 1005¨C1013. https://doi.org/10.1038/s41589-022-01077-5.
17. Altae-Tran, H., Kannan, S., Demircioglu, F.E., Oshiro, R., Nety, S.P., McKay, L.J., Dlaki?, M., Inskeep, W.P., Makarova, K.S., Macrae, R.K., et al. (2021). The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57¨C65. https://doi.org/10.1126/science.abj6856.
18. Schuler, G., Hu, C., and Ke, A. (2022). Structural basis for RNA-guided DNA cleavage by IscB-¦ØRNA and mechanistic comparison with Cas9. Science 376, 1476¨C1481. https://doi.org/10.1126/science.abq7220.
19. Han, D., Xiao, Q., Wang, Y., Zhang, H., Dong, X., Li, G., Kong, X., Wang, S., Song, J., Zhang, W., et al. (2023). Development of miniature base editors using engineered IscB nickase. Nat Methods. https://doi.org/10.1038/s41592-023-01898-9.